

Journal of Organometallic Chemistry 654 (2002) 21-28

www.elsevier.com/locate/jorganchem

Reactions of organotin(IV) compounds with platinum complexes. Part(III). Reactions of $(R_2Sn)_n$, (R = Me or Ph, n = 6; R = Et, n = 9)with platinum complexes^{$\frac{1}{3}}</sup></sup>$

Talal A.K. Al-Allaf*

Department of Chemistry, College of Basic Sciences, Applied Science University, Amman 11931, Jordan

Received 10 December 2001; received in revised form 8 February 2002; accepted 8 February 2002

Abstract

The R₂Sn moieties formed when the cyclic compounds (R₂Sn)_n, R = Me or Ph, n = 6; R = Et, n = 9, are exposed to light, react with the platinum(II) complexes [PtCl₂L₂], L = PEt₃, PPr₃, PBu₃, PEtPh₂, PPh₃ to give new complexes of the general formula [PtCl(SnR₂Cl)L₂]. Similarly, Et₂Sn from (Et₂Sn)₉ reacts with [PtMe(Cl)L₂] to give [PtMe(SnEt₂Cl)L₂] and Ph₂Sn from (Ph₂Sn)₆ reacts with [PtPh(Cl)L₂] or [PtPh₂L₂] to give [PtPh(SnPh₂Cl)L₂] or [PtPh(SnPh₃)L₂] (L = PEt₃), respectively. Reactions involving (R₂Sn)_n and the bridged complex [{Pt(μ -Cl)ClL₂] give a mixture of [PtCl(SnR₂Cl)L₂] and [PtCl(SnRCl₂)L₂], R = Me or Et, L = PBu₃. It is suggested that these reactions inicially involve insertion of R₂Sn moieties into Pt-Cl bonds of the complexes [PtX(Cl) L₂] or [{Pt(μ -Cl)ClL₂] then generate R₂SnXCl (X = Cl, Me, Ph) and the Pt(0)complex [PtL₂], which undergoes oxidative-addition of the formed tin(IV) species to give complexes containing Pt-Sn bonds. With (Ph₂Sn)₆ and [PtPh₂L₂], the mechanism takes a different course. Reactions under similar conditions involving the Pt(0) complexes [Pt(C₂H₄)(PPh₃)₂] or [Pt(COD)₂], (COD = 1,5-cyclooctadiene) and (R₂Sn)₆, R = Me or Ph, gave no detectable complexes containing Pt-Sn bonds. The complex [Pt(PEt₃)₄] and (MeSn)₆ likewise gives no species containing Pt-Sn bonds but with (Ph₂Sn)₆, two complexes, tentatively identified as *trans*-[PtPh(Sn₂Ph₅)(PEt₃)₂] and *trans*-[PtPh(Sn₆Ph₁₁)(PEt₃)₂], were detected in the solution. In all cases, the products were identified by ³¹P-NMR spectroscopy. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Organotin compounds; Stannylenes; Platinum complexes; ³¹P-NMR studies

1. Introduction

The cyclic tin compounds $(R_2Sn)_n$ are known to generate the stannylenes R_2Sn in solution upon exposure to light at room temperature [2,3]. These species can be also formed by thermal disproportionation of 1,2disubstituted distannanes $(R_2SnX)_2$, which gives SnR_2X_2 and R_2Sn [4]. The transient R_2Sn species can undergo insertion into C-halogen, O–O, Sn–H, Sn–C and Sn–Sn bonds [5,6], the reactions being carried out

* Tel.: +962-6-523-7181; fax: +962-6-523-2899. *E-mail address:* talal_al_allaf@hotmail.com (T.A.K. Al-Allaf).

by exposing a mixture of the substrate and $(R_2Sn)_n$ to light. Corresponding insertions into Si-H, Si-O, and Si-Cl bonds take place with the transient silvlene Me₂Si [7]. Stannylenes R_2Sn (R = alkyl or aryl) generated in solution can co-ordinate to transition metals (M), M =Cr, W and Fe [8-10], in the presence of an electron donating solvent such as pyridine or THF, to form complexes containing M-Sn bonds. Several articles dealing with the formation of complexes containing Pt-M bonds (M = Sn, Ge, Si) have been reported recently [11]. As an extention to our ongoing interest in the synthesis of new platinum complexes containing Pt-Sn bonds, we present here the reaction of the cyclic tin compounds $(R_2Sn)_n$, (R = Me or Ph, n = 6; R = Et,n=9) with several platinum complexes, which to the best of our knowledge is novel.

 $^{^{\}star}$ For Part II of this work, see Ref. [J. Organomet. Chem. 590 (1999) 25].

⁰⁰²²⁻³²⁸X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 3 2 8 X (0 2) 0 1 3 3 1 - 1

2. Experimental

2.1. General

All the solvents were dry and oxygen-free, and reactions were carried out under dry nitrogen or dry argon. The proton-decoupled FT ³¹P-NMR spectra were recorded at 40.48 MHz on a JEOL PFT-100 spectrometer with trimethylphosphite (TMP) or trimethylphosphate (TMPO) as external reference and chemical shifts were corrected to H_3PO_4 as a reference standard.

2.2. Starting materials

The metal complexes were prepared by standard methods: $[PtCl_2L_2]$, $L = PEt_3$, PPr_3 , PBu_3 , $PEtPh_2$, PPh_3 ; $[{Pt(\mu-Cl)Cl(PBu_3)}_2]$; *trans*- $[PtCl R(PEt_3)_2]$, R = Me, Ph [12–16]; *cis*- $[PtPh_2(PEt_3)_2]$ [17]; $[PtCl_2(COD)]$ [18]; $[Pt(C_2H_4)(PPh_3)_2]$ [19]; $[Pt(COD)_2]$ [20]; and $[Pt(PEt_3)_4]$ [21]. The organotin compounds were also prepared by standard methods: SnR_2Cl_2 , R = Me, Et, Ph [22,23]; $(R_2Sn)_n$, R = Me, Ph, n = 6 and R = Et, n = 9 [2,24].

2.3. Reaction procedure

The reactions involved $(R_2Sn)_n$, (R = Me, Ph; n = 6 orR = Et; n = 9) and various platinum complexes. A typical procedure was as follows: the compound $(Me_2Sn)_6$ (0.18 g, 1.2 mmol) was suspended in benzene or toluene (20 cm³) and [PtCl₂ L₂] (L = PEt₃, PPr₃, PBu₃, PEtPh₂, PPh₃) (2.1 mmol) was added. The mixture was stirred at room temperature (r.t.) for 24 h $(L = PEt_3, PBu_3, PPh_3); 12 h (L = PEtPh_2) or 50 h (L =$ PPr₃). A yellow-orange solution was obtained, except in the case of $L = PPh_3$ which gave a coloured suspension owing to the insolubility of the starting material *cis*-[PtCl₂ (PPh₃)₂]. The clear supernatant liquid was reduced in volume and used for recording of the ³¹P-NMR spectrum. Details of the reactions between $(R_2Sn)_n$ and platinum complexes are summarised in Table 1.

3. Results and discussion

3.1. Reactions of $(R_2Sn)_n$ with platinum(II) complexes

Reactions of $(R_2Sn)_n$, (R = Me, Ph; n = 6 and R = Et; n = 9), in slight excess, with Pt(II) complexes were carried out in benzene or toluene. Chlorinated solvents react with $(R_2Sn)_n$ upon exposure to daylight by insertion of R_2Sn into C-Cl bonds [5,6]. For R = Me or Et the mixtures were exposed to daylight at room temperature whereas for R = Ph they were exposed to

light from a tungsten lamp at ca. 90 °C. The results of these reactions are summarised in Table 1. The ³¹P-NMR spectrum of the concentrated solution obtained from the reaction between *trans*-[PtCl₂(PEt₃)₂] and (Me₂Sn)₆ in benzene after ca. 24 h comprised a ca. 1:4:1 triplet with tin satellites (94%) together with the signals from a small amount of the starting complex. The values of δ 15.0 ppm and *J*(PtP) 2390 Hz associated with tin- 119 and -117 satellites (Table 2) were identical to those for the complex *trans*-[PtCl(SnMe₂Cl)(PEt₃)₂], which has been prepared by three different methods [1,25] (Scheme 1).

Similarly, the reaction of trans-[PtCl₂(PEt₃)₂] and (Et₂Sn)₉ gave the complex trans-[PtCl (SnEt₂Cl)(PEt₃)₂], which was also obtained by the routes shown in Scheme 1.

In contrast when a mixture of (Ph₂Sn)₆, and trans-[PtCl₂(PEt₃)₂] in toluene was stirred in daylight at room temperature, the ³¹P-NMR spectrum showed that no reaction had taken place even after ca. 3 days. This may due to the lower tendency of (Ph₂Sn)₆ compared with $(Me_2Sn)_6$ and $(Et_2Sn)_9$ to dissociate to R_2Sn moieties. However, when the mixture was exposed to tungsten light at ca. 90 °C for ca. 100 h, the ³¹P-NMR spectrum revealed the presence of (in addition to a small amount of the starting platinum complex) three complexes, all having the trans-configuration. Two of them were identified as *trans*-[PtCl (SnPh₂Cl)(PEt₃)₂] (separately prepared by reaction of $[Pt(PEt_3)_4]$ with $SnPh_2Cl_2$ [25]) and trans-[PtCl (SnPhCl₂)(PEt₃)₂] (Tables 1 and 2), the latter being formed by reaction of the starting platinum complex with the decomposition products of $(Ph_2Sn)_6$ formed upon prolonged heating (see latter). The third complex (10%) was identified as *trans*-[PtPhCl(PEt₃)₂] [26].

Analogous results were obtained from the reactions between *cis*- or *trans*-[PtCl₂L₂], $L = PBu_3$, PPr₃, PEtPh₂ and $(R_2Sn)_n$ (Tables 1 and 2). However, neither $(R_2Sn)_6$ (R = Me, Ph) nor $(Et_2Sn)_9$ reacted with the *cis*-[PtCl₂(PPh₃)₂] in toluene or benzene at room temperature or at higher temperatures, because of the extreme insolubility of cis-[PtCl₂(PPh₃)₂]. The more soluble trans-isomer, trans-[PtCl₂(PPh₃)₂], was thus prepared [27]. The reactions between this complex and $(Me_2Sn)_6$ or $(Et_2Sn)_9$ were not examined, because, the expected products trans-[PtCl(SnR₂Cl)(PPh₃)₂] (R = Me, Et) were already known, having been prepared by the oxidative-addition reaction between $[Pt(C_2H_4)(PPh_3)_2]$ and SnR_2Cl_2 (R = Me, Et), in contrast to that with SnPh₂Cl₂, which gave *cis*-[PtPh(SnPhCl₂)(PPh₃)₂]. The reaction between *trans*-[PtCl₂(PPh₃)₂] and (Ph₂Sn)₆ was examined since the expected product cis- or trans-[PtCl(SnPh₂Cl)(PPh₃)₂ had not been previously prepared. When the ³¹P-NMR spectrum was recorded after UV irradiation for 1 h of a mixture of trans- $[PtCl_2(PPh_3)_2]$ and $(Ph_2Sn)_6$ in benzene, it revealed the

Table 1 Formation of complexes containing R_2Sn (R = Me, Ph, Et) moieties

Reactants	Reaction conditions	Product	L	Configuration	Proportion (%) ^a	
trans-[PtCl ₂ L ₂]+(Me ₂ Sn) ₆	Benzene, daylight, room temperature,24 h	[PtCl(SnMe2Cl)L2]	PEt ₃	trans-	94	
trans-[PtC1 ₂ L ₂]+(Et ₂ Sn) ₉	Benzene, daylight, room temperature,50 h	[PtCl(SnEt ₂ Cl)L ₂]	PEt ₃	trans-	100	
trans-[PtCl ₂ L ₂]+(Ph ₂ Sn) ₆	Toluene, tungsten light, 90 °C, 100 h	[PtCl(SnPh ₂ C1)L ₂]	PEt ₃	trans-	37	
		[PtCl(SnPhCl ₂)L ₂]		trans-	23	
<i>cis</i> - or <i>trans</i> - $[PtCl_2L_2] + (Me_2Sn)_6$	Benzene, daylight, room temperature,24 h	[PtCl(SnMe ₂ C1)L ₂]	PBu ₃	trans-	34	
<i>cis</i> - or <i>trans</i> - $[PtCl_2L_2] + (Et_2Sn)_9$	Benzene, daylight, room temperature,12 h	[PtCl(SnEt ₂ Cl)L ₂]	PBu ₃	trans -	10	
<i>cis</i> - or <i>trans</i> - $[PtCl_2L_2] + (Ph_2Sn)_6$	Toluene, tungsten light, 90 °C, 100 h	[PtCl(SnPh ₂ Cl)L ₂]	PBu ₃	trans -	31	
/ /		[PtCl(SnPhCl ₂)L ₂]		trans -	31	
cis-[PtC1 ₂ L ₂]+(Me ₂ Sn) ₆	Benzene, daylight, room temperature,50 h	[PtCl(SnMe ₂ Cl)L ₂]	PPr ₃	trans -	85	
cis-[PtC1 ₂ L ₂]+(Me ₂ Sn) ₆	Toluene, daylight, room temperature,12 h	[PtCl(SnMe ₂ Cl)L ₂]	$PEtPh_2$	trans -	61	
cis-[PtCl ₂ L ₂]+(Et ₂ Sn) ₉	Benzene, daylight, room temperature, 12 h	[PtCl(SnEt ₂ Cl)L ₂]	$PEtPh_2$	trans-	34	
		[PtCl(SnEt ₂ Cl)L ₂]		cis-	29	
trans-[PtMe(C1)L ₂]+(Et ₂ Sn) ₉	Benzene, daylight, room temperature,40 h	[PtMe(SnEt ₂ Cl)L ₂]	PEt ₃	trans-	6.0	
trans-[PtPh(Cl)L ₂]+(Ph ₂ Sn) ₆	Toluene, tungsten light, 90 °C, 100 h	[PtPh(SnPh ₂ Cl)L ₂]	PEt ₃	trans-	15.5	
trans-[PtCl ₂ L ₂]+(Ph ₂ Sn) ₆	Benzene, UV light, reflux, 1 h	[PtPh(SnPhCl ₂)L ₂]	PPh_3	cis-	42	
		[PtPh(SnPh ₂ Cl)L ₂]		cis-	24.5	
cis-[PtPh ₂ L ₂]+(Ph ₂ Sn) ₆	Toluene, tungsten light, 90 °C, 168 h	[PtPh(SnPh ₃)L ₂]	PEt ₃	trans -	4.0	
cis - [PtPh ₂ L ₂] + SnPh ₄	Toluene, tungsten light, 90 °C, 168 h	[PtPh(SnPh ₃)L ₂]	PEt ₃	trans-	10	
$[Pt_2Cl_4L_2] + (Me_2Sn)_6$	Toluene, daylight, room temperature, 24 h	[PtCl(SnMe ₂ Cl)L ₂]	PBu ₃	trans-	2.5	
		[PtCl(SnMeCl ₂)L ₂]		trans-	26	
$[Pt_2Cl_4L_2] + (Et_2Sn)_9$	Toluene, daylight, room temperature, 1 h	[PtCl(SnEt ₂ Cl)L ₂]	PBu ₃	trans-	19	
		[PtCl(SnEtCl ₂)L ₂]		trans-	17.5	
cis-[PtCl ₂ L ₂]+(Et ₂ ClSn) ₂	Toluene, sealed tube, 130 °C, 30 h	[PtCl(SnEtCl ₂)L ₂]	PBu ₃	trans-	44	
cis-[PtCl ₂ L ₂]+SnCl ₄	Toluene, room temperature, soon	[PtCl(SnC1 ₃)L ₂]	PBu ₃	trans-	10	
$[PtL_4]+(Ph_2Sn)_6$	Toluene, room temperature, 2 h	$[PtPh(Sn_2Ph_5)L_2]$	PEt ₃	trans-	22	
		$[PtPh(Sn_6Ph_{11})L_2]$		cis-	30	
trans-[PtMe(C1)L ₂]+(Me ₂ Si) ₆	Cyclohexane, UV light,13 h	[PtCl(SiMe ₃)L ₂]	PBu ₃	trans-	35.5	

^a Proportions of complexes were inferred directly from the relative peak heights in the ³¹P{¹H}-NMR spectra.

presence of *cis*-[PtPh(SnPhCl₂)(PPh₃)₂] (42%), *cis*-[PtPh(SnPh₂Cl)(PPh₃)₂] (24%), *trans*-[PtPhCl(PPh₃)₂] (24.5%), as well as a small amount of the starting complex. There was no evidence for the presence of *cis*-or *trans*-[PtCl(SnPh₂Cl)(PPh₃)₂ in the spectrum (see below for the suggested mechanism).

When *trans*-[PtMeCl(PEt₃)₂] was treated with (Et₂Sn)₉ with exposure to daylight in benzene at room temperature for ca. 40 h, the ³¹P-NMR spectrum revealed the presence of a complex with δ 14.8 ppm and J(PtP) 2600 Hz, which was judged to be *trans*-[PtMe(SnEt₂Cl)(PEt₃)₂]. These parameters are identical to those for *trans*-[PtMe(SnMe₂Cl)(PEt₃)₂] prepared by oxidative-addition of SnMe₃Cl to $[Pt(PEt_3)_3]$, {J(PtP)2583 Hz} [25]. Similarly trans-[PtPhCl(PEt₃)₂] when treated with (Ph₂Sn)₆ in toluene under tungsten light irradiation at 90 °C for ca. 100 h, the ³¹P-NMR presence spectrum revealed the transof $[PtPh(SnPh_2Cl)(PEt_3)_2]$ (Tables 1 and 2), authentic samples of which were prepared from SnPh₃Cl by the three methods shown in Scheme 1.

3.2. Suggested mechanism for reactions of $(R_2Sn)_n$ with platinum(II) complexes

We consider two possible mechanisms for the reactions of $(R_2Sn)_n$ with platinum(II) complexes: The stannylenes R₂Sn generated in aromatic solvents from (R₂Sn)_n, upon exposure to light, undergo direct insertion into Pt-Cl bonds to form Pt(SnR₂Cl) species.

$$(\mathbf{R}_2 \mathbf{S} \mathbf{n})_n \xrightarrow{h\nu} n \mathbf{R}_2 \mathbf{S} \mathbf{n} \tag{1}$$

$$[PtX(Cl)L_2] + R_2Sn \rightarrow [PtX(SnR_2Cl)L_2]$$
(2)

2) The R_2Sn moieties generated in solution first inserted into Pt–Cl bonds to form Pt(SnR₂Cl) species followed by generation of R_2SnXCl , with reduction of the platinum(II) complex to [PtL₂]. The latter, which is highly reactive, undergoes oxidativeaddition of R_2SnXCl to give [PtX(SnR₂Cl)L₂] Eq. (3):

$$[PtX(Cl)L_{2}] + R_{2}Sn \rightarrow [PtX(SnR_{2}Cl)L_{2}]$$

$$\rightarrow [PtL_{2}] + R_{2}SnXCl \xrightarrow{fast}[PtX(SnR_{2}Cl)L_{2}]$$
(3)

We favour the second mechanism for the reasons set out below:

A) When a mixture of *trans*-[PtCl₂(PBu₃)₂] and (Et₂Sn)₉ in toluene was stirred with a five-fold excess of SnMe₂Cl₂ at room temperature, the ³¹P-NMR spectrum showed the presence of, in addition to some unreacted platinum starting material, only

Table 2 ³¹P{¹H}-NMR data of complexes obtained from the reaction between platinum(II) complexes and $(R_2Sn)_n$, R = Me, Ph, n = 6; R = Et, n = 9

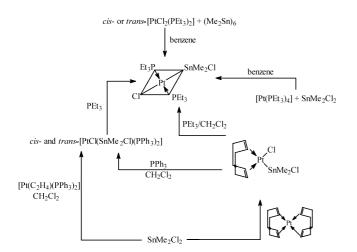
Complex	L	δ (ppm)	$^{1}J(\text{PtP})$ (Hz)	$^{2}J(\mathrm{SnP})$ (Hz)		$^{2}J(\text{PP})$ (Hz)
				¹¹⁹ Sn	¹¹⁷ Sn	
trans-(PtCl(SnMe ₂ Cl)L ₂] ^a	PEt ₃	16.0	2390	137 ^f		
	5	16.5 ^g	2387	139	133	
	PBu ₃	7.3	2376	140	134	
	PPr ₃	6.6	2368	137 ^f		
	PEtPh ₂	19.8	2651	137 ^f		
trans-($PtCl(SnEt_2Cl)L_2$] ^a	PEt ₃	16.8 ^g	2420	127 ^f		
	PBu ₃	8.3	2398	128	123	
	PEtPh ₂	20.1	2681	127 ^f		
cis-[PtCl(SnEt ₂ Cl)L ₂]	PEtPh ₂	25.7 °	2134	2076	1987	
		16.3 ^d	4312	e	e	12
trans-[PtMe(SnEt ₂ Cl)L ₂] ^a	PEt ₃	14.8	2600	e	e	
trans-[PtCl(SnPh ₂ Cl)L ₂] ^a	PEt ₃	14.6 ^g	2318	150	143	
	PBu ₃	5.6	2300	149	144	
trans-[PtPh(SnPh ₂ Cl)L ₂] ^a	PEt ₃	7.7 ^g	2539	195	186	
trans-[PtPh(SnPh ₃)L ₂] ^a	PEt ₃	6.3 ^g	2580	e	e	
trans-[PtPh(Sn ₂ Ph ₅)L ₂] ^a	PEt ₃	9.7 ^g	2544	204	195	
cis-[PtPh(Sn ₆ Ph ₁₁)L ₂] ^a	PEt ₃	10.5 °	2264			17
		5.3 ^d	1966			
cis-[PtPh(SnPhCl ₂)L ₂] ^{b,h}	PPh ₃	26.1 °	3107			
		20.4 ^d	2054	e	e	16
cis-[PtPh(SnPh ₂ Cl)L ₂] ^{b,h}	PPh ₃	27.2 °	2637			
		23.5 ^d	2138	e	e	15
trans-[PtCl(SnPhCl ₂)L ₂] ^a	PEt ₃	14.4	2208	180	172	
	PBu ₃	5.6	2192	180	171	
trans-[PtCl(SnMeCl ₂)L ₂] ^a	PBu ₃	6.2	2223	172	165	
trans-[PtCl(SnEtCl ₂)L ₂] ^a	PBu ₃	6.9	2240	165	158	
trans-[PtCl(SnCl ₃)L ₂] ^a	PBu ₃	6.0	2053	234	223	
trans-[PtCl(SiMe ₃)L ₂]	PBu ₃	12.7	2820			

^a Data obtained with toluene as solvent and H₃PO₄ as external reference.

^b Data obtained by dichloromethane as solvent.

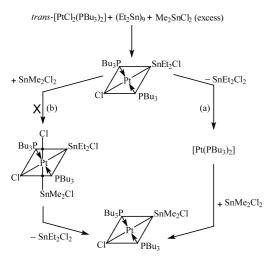
^c Parameters for P trans- to Sn.

^d Parameters for P *cis*- to Sn.


^e Signal to noise ratio insufficient for observation of Sn satellites.

^f Tin satellites for Sn(119) and Sn(117) were not very well resolved.

^g Closely similar to those reported [25].


^h These were already reported and their data are closely similar to those reported [37].

trans-[PtCl(SnMe₂Cl)(PBu₃)₂] and no *trans*-[PtCl(SnEt₂Cl)(PBu₃)₂].This is what would be ex-

Scheme 1. Methods of preparing trans-[PtCl(SnMe₂Cl)(PEt₃)₂].

pected for the mechanism above (Eq. (3)), in which Et₂Sn first inserts into Pt-Cl bonds of [PtCl₂ (PBu₃)₂] to form Pt(SnEt₂Cl) species and the latter then generates Et₂SnCl₂ with the formation of $[Pt(PBu_3)_2]$, then since $SnMe_2Cl_2$ is more reactive than $SnEt_2Cl_2$, it would selectively add to the Pt(0)complex to give the observed product (Scheme 2a). However, in another experiment, when the complex trans-[PtCl(SnEt₂Cl)(PBu₃)₂], prepared as described earlier, was treated with an excess of SnMe₂Cl₂ in toluene for 4 h the ³¹P-NMR spectrum of the solution revealed the presence of only trans-[PtCl(SnMe₂Cl)(PBu₃)₂]. It is possible that SnMe₂Cl₂ added oxidatively to trans-[PtCl(SnEt₂Cl)(PBu₃)₂] to give a Pt(IV) intermediate (Scheme 2b) which underwent reductive-elimination of SnEt₂Cl₂ to form the Pt(II) complex trans-[PtCl(SnMe₂Cl)(PBu₃)₂]. Thus, it is also possible that the reaction between trans-[PtCl₂(PBu₃)₂] and a

Scheme 2. The suggested mechanism for the reaction of stannylenes R_2Sn with $[PtCl_2L_2]$ complexes.

mixture of $(Et_2Sn)_9$ and $SnMe_2Cl_2$ did not form $[Pt(PBu_3)_2]$ but instead gave *trans*- $[PtCl(SnEt_2Cl)(PBu_3)_2]$, which reacted with $SnMe_2Cl_2$ as in Scheme 2b. This ambiguity was resolved as described under (B), below.

B) We mentioned above that treatment of trans-[PtCl₂(PPh₃)₂] with (Ph₂Sn)₆ gave a mixture of cis-[PtPh(SnPhCl₂)(PPh₃)₂] and *cis*-[PtPh(SnPh₂Cl)-(PPh₃)₂] (Tables 1 and 2) and not the expected [PtCl(SnPh₂Cl)(PPh₃)₂], which would be produced by insertion of Ph₂Sn into Pt-Cl bonds. It is quite likely that decomposition of (Ph₂Sn)₆ to various species occurred and that these insert into Pt-Cl bonds of trans-[PtCl₂(PPh₃)₂] (Eq. (3))to give finally [Pt(PPh₃)₂] and SnPh₂Cl₂ as well as SnPh₃Cl, and both of these tin compounds reacted with the Pt(0)complex give mixture to а of cis- $[PtPh(SnPhCl_2)(PPh_3)_2]$ and $cis-[PtPh(SnPh_2Cl)-$ (PPh₃)₂], respectively. It is possible that insertion of Ph₂Sn moieties into Pt-Cl bond had initially occurred to give cis-or trans-[PtCl(SnPh₂Cl)- $(PPh_3)_2$ as an intermediate, and that the latter then reacted with another molecule of SnPh₂Cl₂ to give thermodynamically the stable cis-[PtPh(SnPhCl₂)(PPh₃)₂] [1]. The question then arises of how the complex cis-[PtPh(SnPh₂Cl)(PPh₃)₂] could be formed in solution if the reaction involved insertion of Ph₂Sn moieties? One possibility is that UV irradiation of cis-[PtPh(SnPhCl₂)(PPh₃)₂] in solution somehow formed cis-[PtPh-(SnPh₂Cl)(PPh₃)₂], and so we examined the behaviour of cis-[PtPh(SnPhCl₂)(PPh₃)₂] (prepared as described in ref. [28]) when subjected to UV irradiation in toluene. After 1 h, the ³¹P-NMR spectrum of the solution revealed the presence of *trans*-[PtPhCl(PPh₃)₂] { δ 24.9 ppm and J(PtP) 3158 Hz (CH₂Cl₂) as well as *trans*-[PtCl₂(PPh₃)₂] { δ 20.0 ppm, J(PtP) 2672 Hz (CH₂Cl₂)}, and no complexes containing Pt–Sn bonds were detected. This showed that the formation of *cis*-[PtPh(SnPh₂Cl)(PPh₃)₂] in the reaction involving (Ph₂Sn)₆ was not due to the effect of the UV light on the *cis*-[PtPh(SnPhCl₂)(PPh₃)₂].

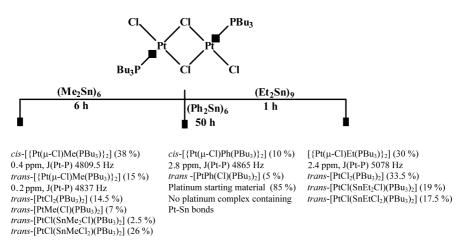
C) i) The reaction of *cis*-[PtPh₂(PEt₃)₂] and (Ph₂Sn)₆ in toluene gave *trans*-[PtPh(SnPh₃)(PEt₃)₂] and some SnPh₄ was also formed.

ii) The reaction of cis-[PtPh2(PEt3)2] with SnPh4 in toluene gave *trans*-[PtPh(SnPh₃)(PEt₃)₂] as shown by ³¹P-NMR spectroscopy (Tables 1 and 2). These experiments provide good evidence that the first step is the formation of Pt(0) complex which is followed by oxidative-addition of SnPh₄ [produced by decomposition of $(Ph_2Sn)_6$ [3]. To confirm this, we exposed a stirred suspension of (Ph₂Sn)₆ in toluene under nitrogen at 90 °C to tungsten light for ca. 12 days. The mixture was then allowed to cool to room temperature and $[Pt(C_2H_4)(PPh_3)_2]$ was added and the toluene evaporated off. The residue was dissolved in dichloromethane (in which it is more soluble) and the ³¹P-NMR spectrum of the solution revealed the presence of two ciscomplexes as the major products along with a little of the starting complex. One of these cis-complexes was judged to be cis-[PtPh(SnPh₃)(PPh₃)₂] [28] (Table 2) and the other gave parameters of δ 27.7 ppm; J(PtP) 2446 Hz (P trans- to Sn) and δ 22.1 ppm; J(PtP) 2097 Hz (P trans- to Ph) (the tin satellites could not be observed, because of the low signal to noise ratio). These parameters are closely similar to those for cis-[PtPh(SnPh₂OSnPh₃)- $(PPh_3)_2$ and *cis*-[PtPh(SnPh₂OH)(PPh₃)₂] [29]. The results provide good evidence that (Ph₂Sn)₆ decomposes in solution under the conditions used to give organotin compounds that can react with Pt(0)complexes in the usual way. It is noteworthy that $(Ph_2Sn)_6$ does not react with $[Pt(C_2H_4)(PPh_3)_2]$ under normal conditions (vide infra).

D) It should be noted that double insertions of R_2Sn moieties into both Pt-Cl bonds in the reaction between [PtCl₂L₂] and $(R_2Sn)_n$ to give [Pt(SnR₂Cl)₂L₂] did not occur in any of the experiments, which provides further support for the mechanism shown in Scheme 2a.

The reaction of $(Me_2Si)_6$ with platinum(II) complexes was carried out in the hope of obtaining complexes formed by insertion of the Me₂Si moiety into Pt–Cl bonds. Due to the low reactivity of $(Me_2Si)_6$, UV light was used, and the quartz reaction vessel was irradiated at a distance of ca. 10 cm with a Hanovia medium pressure Hg lamp, model UVS. 500. The ³¹P-NMR spectrum of a mixture obtained from *cis*-or *trans*-[Pt Cl₂ L₂] (L = PBu₃ or PEt₃) and $(Me_2Si)_6$ in 1:1 or 6:1 molar ratio in cyclohexane after 16 h of irradiation revealed the presence of a complex with the parameters δ 14.4 ppm, J(PtP) 2715 Hz (L = PBu₃) and δ 23.3 ppm, J(PtP) 2726.5 Hz (L = PEt₃) which was identified as trans-[PtCl(H)L₂] [30]. It seems that Me₂Si moiety initially inserts into Pt-Cl bonds of [PtCl₂L₂] followed by generation of SiMe₂Cl₂ and [PtL₂]; the former would then undergo hydrolysis very readily to give HCl, which would add to [PtL2]. When a mixture of trans-[PtMe(Cl)(PBu₃)₂] and a slight excess of (Me₂Si)₆ in cyclohexane was UV irradiated for ca. 13 h, the ³¹P-NMR spectrum revealed the presence of three complexes, two of which were identified as trans- $[PtCl_2(PBu_3)_2)]$ (22%) and *trans*- $[PtCl(H)(PBu_3)_2]$ (20%). The third complex (36%), with parameters δ 12.7 ppm and J(PtP) 2820 Hz, was tentatively identified as trans-[PtCl(SiMe₃)(PBu₃)₂] since its coupling constant is very similar to that for e.g. transtrans-[PtCl(SiPh₂Me)L₂], $[PtCl(SiPh_3)L_2],$ trans- $[PtCl(SiCl_3)L_2], L = PMe_2Ph;$ for which the values of J(PtP) are 2772, 2842 and 2873 Hz, respectively [31]. This favours the mechanism suggested for the analogous reactions with $(R_2Sn)_n$ compounds (Eq. (3) and Scheme 2a).

3.3. Reaction of $(R_2Sn)_n$ with bridged platinum complexes


Reactions of $(R_2Sn)_n$ with the bridged complex $[{Pt(\mu-Cl)Cl(PBu_3)}_2]$ were examined, these provide evidence of whether or not insertion of R_2Sn moieties occurs. The reactants and the products (with their proportions) of these reactions are indicated in Scheme 3.

When the ³¹P-NMR spectrum of the mixture obtained from of [{Pt(μ -Cl)Cl(PBu₃)}₂] and (Et₂Sn)₉ was recorded again after 24 h at room temperatures, it showed that the [{Pt(μ -Cl)Et(PBu₃)₂}₂] had disappeared and the

proportions of the other products had increased to 43, 29 and 28, respectively (Scheme 3). The disappearance of the [{ $Pt(\mu-Cl)Et(PBu_3)_2$ }] is probably associated with the instability arising from the ease of β -elimination from the ethyl group attached to platinum. In contrast, the complex [{ $Pt(\mu-Cl)Me(PBu_3)_2$ }], is fairly stable in Furthermore, the solution. complex trans-[PtCl(SnEtCl₂)(PBu₃)₂] (Scheme 3) was also detected by ³¹P-NMR spectroscopy when a solution reaction of cis-[PtCl₂(PBu₃)₂] and (Et₂ClSn)₂ in toluene was heated at 130 °C in a sealed tube for 30 h in an attempt to produce Et₂Sn species [4] that might insert into Pt-Cl bonds to give, e.g. trans-[PtCl(SnEt₂Cl)(PBu₃)₂]. The ³¹P-NMR spectrum of the mixture revealed the presence of, in addition to unchanged starting complex, only the trans-[PtCl(SnEtCl₂)(PBu₃)₂] (44%). The formation of trans-[PtCl(SnRCl₂)(PBu₃)₂] (R = Me, Et) in this reaction and the reactions listed in Scheme 3 can be understood in terms of a redistribution of organotin compounds in the presence of the extra chlorine in the bridge complex, to form SnRCl₃, with the latter, which has a high reactivity, reacting immediately with $[Pt(PBu_3)_2]$ (Eq. (3), Scheme 2a) to give trans-[PtCl(SnRCl₂)(PBu₃)₂].

It is evident that none of the reactions of $(R_2Sn)_n$ with Pt(II) complexes that we examined proceeded via direct insertion of R₂Sn moieties into the Pt–Cl bonds. Furthermore we observed no formation of any bridge complex containing Pt–Sn bonds in the reaction between [{Pt(μ -Cl)Cl(PBu₃)}₂] and (R₂Sn)_n. In contrast, the stable divalent tin compounds R₂Sn, R = N(SiMe₃)₂ and CH(SiMe₃)₂ were found to undergo ready direct insertion into Pt–Cl bonds [32].

In order to complete the series of the complexes *trans*-[PtCl(SnR_xCl_{3-x})(PBu₃)₂] (X = 2, 3, 0), that with X = 0, i.e. *trans*-[PtCl(SnCl₃)(PBu₃)₂] [usually prepared by insertion of SnCl₂ into Pt-Cl bonds] was obtained from the reaction of *cis*-[PtCl₂(PBu₃)₂] with SnCl₄. When the

Scheme 3. The products formed from the reaction of *trans*-[{ $Pt(\mu-Cl)Cl(PBu_3)$ }] and (R_2Sn)_n in toluene. For ³¹P-NMR data of the Pt-Sn complexes, see Table 2.

SnCl₄ was added to *trans*-[PtCl₂(PBu₃)₂] in toluene a rapid reaction occurred and a white precipitate separated. The solid was dissolved in dichloromethane and the ³¹P-NMR spectrum recorded to show that two complexes were present, with δ 5.5 ppm; J(PtP) 3657 Hz (78%) and δ 10.6 ppm; J(PtP) 3589 Hz (22%), neither associated with tin satellites. These may be related to a bridge complex present as both cis-and *trans*-isomers, but are not [{Pt(μ -Cl)Cl(PBu₃)}] {*cis*-, δ 0.2 ppm; J(PtP) 3702 Hz and trans-, δ 2.6 ppm; J(PtP)3814 Hz (CH₂Cl₂) [33]. The yellowish filtrate was shown by ³¹P-NMR spectroscopy to contain trans-[PtCl(SnCl₃)(PBu₃)₂] (Tables 1 and 2) as its parameters were identical to those for *trans*-[PtCl(SnCl₃)L₂](L = PEt₃ [34] and $L = PCyc_3$ [25]). It is relevant to note that Baird [35] reported that trans-[PtH(Cl)(PPh₃)₂] and SnCl₄ in benzene gave an orange precipitate, which was identified as [PtCl₂(SnCl₃)₂(PPh₃)₂], i.e. a Pt(IV) complex. We repeated that reaction in order to examine the ³¹P-NMR spectrum of the product. When the orange precipitate was isolated and dissolved in dichloromethane, the spectrum revealed the presence of two complexes with parameters: δ 12.9 ppm; J(PtP) 3884 Hz (63%) and δ 16.1 ppm; J(PtP) 3825 Hz (37%). None of the resonances showed tin satellites, although the signal to noise ratios were easily adequate for the detection of such satellites. The parameters could be for cis- and trans- isomers of a bridged complex, but not cis- and trans-[{Pt(μ -Cl)Cl(PPh_3)}] {cis-, δ 3.4 ppm; J(PtP) 4004 Hz and *trans*-, δ 5.2 ppm; J(PtP) 4099 Hz [34]. We cannot account for Baird's results [35], and we could not detect the complex he suggested or, indeed, any complex containing Pt-Sn bonds.

3.4. Reaction of $(R_2Sn)_n$ with platinum(0) complexes

The reactions of $(R_2Sn)_n$ with platinum(0) complexes were examined in the hope of obtaining complexes arising either by ring opening of $(R_2Sn)_n$ to give bistin chelation to platinum or by insertion of platinum(0) into Sn-R bonds. It was reported that stable R₂Sn moieties (R = alkyl, aryl or halogen; M = Ge, Sn, Pb) can co-ordinate to Cr, W and Fe [8–10] in the presence of an electron donor solvent (B:), e.g. pyridine or THF (Equation 4).

Thus we carried out many reactions between platinum(0) complexes and $(R_2Sn)_n$ in various solvents. In the case of $[Pt(C_2H_4)(PPh_3)_2]$ and $(Me_2Sn)_6$ or $(Ph_2Sn)_6$ in benzene, the ³¹P-NMR spectrum recorded after 3 h at room temperature revealed the presence only of the platinum starting material, but when the mixture was heated at reflux for ca. 10 min or put aside for a further ca. 20 h, the ³¹P-NMR spectrum revealed the presence of, in addition to the unchanged $[Pt(C_2H_4)(PPh_3)_2]$, a complex with δ 49.9 ppm and J(PtP) 4463 Hz (30%), which was definitely identified as $[Pt(PPh_3)_3]$ [36]; no complexes containing Pt–Sn bonds were observed. Similar results were obtained when either THF or pyridine was used instead of benzene.

When the more reactive complex $[Pt(PEt_3)_4]$ was used with $(Me_2Sn)_6$ in toluene, an immediate decomposition, to give a dark brown mixture, occurred, but the ³¹P-NMR spectrum showed that no complex containing Pt– Sn bonds was formed. When $(Ph_2Sn)_6$ was used instead of $(Me_2Sn)_6$, the ³¹P-NMR spectrum revealed the presence of three complexes, the first one (17%) being the *trans*-[PtPh₂(PEt₃)₂] [26]. The second (22%) and third (30%) complexes (Tables 1 and 2) were identified as *trans*-[PtPh(Sn₂Ph₅)(PEt₃)₂] [25] and *cis*-[PtPh(Sn₆Ph₁₁)(PEt₃)₂], respectively.

An attempt was made to bring $(Ph_2Sn)_6$ into reaction with the more active platinum(0) complex $[Pt(COD)_2]$ in order to obtain complexes containing Pt–Sn bonds. A suspension of the reactants was stirred in toluene at room temperature for ca. 2 h, during which it turned yellow–brown. It was filtered through Celite and the filtrate evaporated to dryness. The residual solid was redissolved in dichloromethane and PPh₃ was added. The ³¹P-NMR spectrum showed that no complex containing Pt–Sn bonds was present and only small singlet peaks (not associated with platinum satellites) were observed.

Acknowledgements

This work was carried out in the School of Molecular Sciences at Sussex University, Brighton BN1 9QJ, UK, in association with Professor C. Eaborn and Dr. A. Pidcock. The author is very grateful to them for their kind help and advice during the work.

References

- T.A.K. Al-Allaf, J. Organomet. Chem. 590 (1999) 25 (and references therein).
- [2] M. Gielen, P.G. Harrison, 'Organomet. Coord. Chem. Germanium, Tin, Lead' A Plenary Lecture, Second International Conference, 1977 (pub. 1978), pp. 51–74.
- [3] A.L. Rheingold, Homoatomic Rings, Chains and Macromolecules of Main Group Elements (Chapter 11), Elsevier, Amsterdam, 1977, pp. 277–288.
- [4] R. Sommer, B. Schneider, W.P. Neumann, Liebigs Ann. Chem. 692 (1966) 12.

- [5] U. Schroer, W.P. Neumann, Angew. Chem. Int. Ed. 14 (1975) 240.
- [6] W.P. Neumann, A. Schwarz, Angew. Chem. Int. Ed. 14 (1975) 812.
- [7] M. Ishikawa, K. Kumada, J. Organomet. Chem. 42 (1972) 325.
- [8] T.J. Marks, A.R. Newmann, J. Am. Chem. Soc. 95 (1973) 769.
- [9] A.B. Cornwell, P.G. Harrison, J.A. Richards, J. Organomet. Chem. 76 (1974) C26.
- [10] A.B. Cornwell, P.G. Harrison, J. Chem. Soc. Dalton Trans. (1975) 1486.
- [11] (a) V. Christou, B.G. Young, J. Organomet. Chem. 510 (1996) 157;
 - (b) H. Gilges, U. Schubert, Eur. J. Inorg. Chem. (1998) 897.;
 - (c) H. Gilges, G. Kickelbick, U. Schubert, J. Organomet. Chem. 548 (1997) 57;
 - (d) Y. Tsuji, Y. Obora, J. Organomet. Chem. 611 (2000) 343;
 - (e) A.J. Canty, H. Jin, B.W. Skelton, A.H. White, Aust. J. Chem. 52 (1999) 417;
 - (f) L. Abdol Latif, C. Eaborn, A. Pidcock, N.S. Weng, J. Organomet. Chem. 474 (1994) 417.
- [12] M.F. Lappert, P.P. Power, Adv. Chem. Ser. Am. Chem. Soc. Washington (1976) 70.
- [13] A.C. Simithies, M. Rycheck, M. Orchin, J. Organomet. Chem. 12 (1968) 199.
- [14] J. Chatt, G.A. Rowe, Nature 191 (1961) 1191.
- [15] K.A. Jensen, Z. Anorg. U. Allgen. Chem. 299 (1936) 225.
- [16] L. Malatesta, C. Cariello, J. Chem. Soc. (1958) 2323.
- [17] J. Chatt, B.L. Shaw, J. Chem. Soc. (1959) 4020.

- [18] J.X. McDermott, J.F. White, G.M. Whitesides, J. Am. Chem. Soc. 98 (1976) 6521.
- [19] C.D. Cook, G.S. Jouhal, J. Am. Chem. Soc. 90 (1968) 1464.
- [20] J.L. Spencer, Inorg. Synth. 19 (1979) 213.
- [21] G.W. Parshall, J. Am. Chem. Soc. 96 (1974) 2360.
- [22] O.H. Johnson, H.E. Fritz, D.O. Halvorson, R.L. Evans, J. Am. Chem. Soc. 77 (1955) 5857.
- [23] H. Gilman, L.A. Gist, J. Organomet. Chem. 22 (1957) 368.
- [24] W.P. Neumann, K. Konig, Liebigs. Ann. Chem. 677 (1964) 1.
- [25] T.A.K. Al-Allaf, Asian J. Chem. 11 (1999) 348 (and refs. therein).
- [26] F.A. Allen, A. Pidcock, J. Chem. Soc. (A) (1968) 2700.
- [27] S.H. Martin, P. Haake, Chem. Commun. (1970) 202.
- [28] G. Butler, C. Eaborn, A. Pidcock, J. Organomet. Chem. 181 (1979) 47.
- [29] G. Butler, D. Phil. Thesis, Sussex University, UK, 1978.
- [30] G. Socrates, J. Inorg. Nucl. Chem. 31 (1969) 1667.
- [31] B.T. Heaton, A. Pidcock, J. Organomet. Chem. 14 (1968) 235.
- [32] (a) M.F. Lappert, R.S. Rowe, Coord. Chem. Rev. 100 (1990) 267;
 (b) T.A.K. Al-Allaf, J. Chem. Res., in press.
- [33] K.J. Odell, D. Phil. Thesis, Sussex University, UK, 1976.
- [34] P.S. Pregosin, S.N. Sze, Helv. Chem. Acta 61 (1978) 1848.
- [35] M. Baird, J. Inorg. Nucl. Chem. 29 (1967) 367.
- [36] C.A. Tolman, W.C. Seidel, D.H. Gerlach, J. Am. Chem. Soc. 94 (1972) 2669.
- [37] (a) G. Butler, C. Eaborn, A. Pidcock, J. Organomet. Chem. 181 (1979) 47;
 - (b) C. Eaborn, A. Pidcock, B.R. Steele, J. Chem. Soc. Dalton (1976) 767.